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A quasi-linear theory for rotating flow over topography. 
Part 1. Steady &plane channel 
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Steady rotating flow over topography in a periodic channel is examined, with emphasis 
on the interaction of waves, topography and mean flow. A simple quasi-linear theory 
is presented that features an implicit equation relating the net zonal flow to the forcing 
and topography. A good description of the dynamics is obtained, even when resonant 
Rossby waves appear. Multiple solutions for given external parameters are predicted 
in some cases, and confirmed by comparison with a fully nonlinear numerical model. 

The nonlinear results also indicate that the zonally averaged shear can be important 
when topographic effects or Rossby numbers are large. With this factor taken into 
account the theory gives good agreement with the fully nonlinear model, as long as 
eddy-eddy interactions are minor. 

The theory is relevant to the dynamics of planetary waves in the atmosphere, and 
may also be applied to some oceanic problems. 

1. Introduction 
The large-scale (0( 1000 km)) currents in the ocean and atmosphere are almost 

horizontal and non-divergent. However, their courses are strongly influenced by the 
small vertical motion caused by mountains, heat sources, and frictionally induced 
divergence at boundaries. Some of the first analyses of such effects on the atmosphere 
have been given by Charney & Eliassen ( 1  949) and Smagorinsky ( 1  953). Further work 
using detailed numerical models, in conjuction with analysis of observations, has helped 
identify the important role of these effects (see, for example, Manabe &Terpstra 1974). 
Recently Grose & Hoskins (1979) have used a barotropic model with realistic topo- 
graphy and mean zonal flow to calculate flow patterns in good agreement with season- 
ally averaged upper-troposphere observations. 

The aim of the work presented here is to develop a simple theory to describe the 
effect of obstacles on large-scale rotating flow in recycling systems, with eventual 
application to the atmosphere and ocean in mind. In part 1 flow in a periodic channel is 
analysed to describe the dynamics simply. More complicated annular geometry is 
treated in part 2. (The annulus case irdudes the additional effect of meridional 
vorticity advection on the net zonal flow. It is also more suitable for comparison with 
laboratory experiments.) 

Steady flow in an annulus has been previously described by Davey (1978)) and the 
present theory is an extension and improvement of Davey’s to include the p-effect 
and associated Rossby-wave dynamics. Unlike other related papers on waves generated 
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by topography (e.g. Neumann 1960; Clarke & Fofonoff 1969; McCartney 1976) 
the strength of the basic zonal flow is not prescribed but is allowed to adjust to the 
interaction of waves and topography. Feedback then occurs that can make the system 
very sensitive to small changes in the forcing, particularly when Rossby waves are 
present and dissipation is weak. (This is the situation in the atmosphere on a planetary 
scale, and it, may also apply to the ocean circulation.) For such systems standard 
perturbation methods of analysis can give unsatisfactory results due to the neglect of 
changes in the basic flow. The quasi-linear theory described in the following sections 
pays proper attention to such effects. 

The sensitivity to the forcing may be relevant to blocking in the atmosphere, 
whereby a particular flow pattern can appear and persist for an unusually long time. 
(Egger 1978 gives an account of such events, together with some numerical simula- 
tions.) Recent studies with this application have been made by Charney & DeVore 
(1 979) and Hart (1  979)) with emphasis on the occurrence of multiple equilibria for 
given external parameters. (Charney & DeVore examine transitions between alterna- 
tive states, and Hart discusses changes due to variations in external forcing.) 
The phenomenon of multiple steady states is also predicted by this quasi-linear 
theory. As part of this paper the dynamics of alternative blocked and unblocked 
states are described, and the effect of nonlinear interactions on their occurrence is 
discussed. 

The general theory for quasi-geostrophic barotropic flow in a /3-plane channel is 
given in $ 2 .  (Time dependence is included in anticipation of a later analysis of the 
transition from steady to oscillatory solutions.) The system is forced, via Ekman 
layers, by a prescribed surface velocity. A surface wind stress can be substituted for 
oceanic applications. (For the atmosphere a meridional temperature gradient should 
be used and the upper Ekman layer removed, but the internal dynamics is funda- 
mentally unchanged.) For the simplest quasi-linear approximation described in $ 3 
most nonlinear interactions are discarded ; only the zonal average of eddy-topography 
interaction is retained to allow mean flow changes. An implicit equation relating net 
zonal flow to forcing and topography can then be obtained. 

In  9 4 results from this theory are given for flow over a simple obstacle. The effects of 
varying forcing and dissipation are shown, and multiple solutions with and without 
the /?-effect are discussed. Simple dynamical explanations are offered for the features 
seen. 

To check the theory a nonlinear numerical model was developed. Results from the 
two models are compared in $ 5 ,  and good agreement is found at  low Rossby number, 
including verification of multiple solutions. For larger Rossby numbers (stronger 
forcing) the results differ owing to the neglect of mean shear. An improved theory is 
described in $6,  and some limitations on multiple solution regimes are obtained. 
Finally the results are summarized in 6 7, with a discussion of applications. 

2. Basic equations 
The geometry for the rotating channel is shown in figure 1. The channel has periodic 

length 2n-L, width bL, and average depth H,. The y axis should be regarded as the 
northward direction, the x axis eastward. A horizontal velocity u,* is prescribed a t  
the upper surface z* = H, to drive the flow. The topography z* = h*(x, y) has height 
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FIGURE 1 .  Geometry for the periodic channel, with side walls at y = 0, bL. 

scale h,* < H,. Variation ofrotation rate with latitude is simulated by using a P-plane, 
so the Coriolis parameter is 

f = f o  +P*(y* - gbL), 

where i f o  is tbhe mid-channel rotation rate. 
For motion with a time scale much greater than l/fo, as assumed here, the bulk of 

the flow is quasi-geostrophic. This interior flow is driven and dissipated via thin 
Ekmen layers a t  the upper and lower boundaries. Stratification effects are neglected, 
so only the barotropic (depth-averaged) component is considered. The vertical 
component of vorticity for this flow is changed relative to its basic value f, by changes 
in f and by stretching of vertical fluid columns by topographic variations and Ekman- 
layer divergence. These effects thus determine the course of the flow. (A more detailed 
account of the dynamics may be found in Pedlosky 197 1 .) 

Some non-dimensional variables are defined as follows (asterisks denote dimensional 
variables) : 

(u*, v*) = C(Z1, v), 2u* = C(H, /L)  w, 

(z*,y*) = L ( x , y ) ,  z* = Hoz, 

p* = Cf0Lp, t * =  t lwf, .  

The pressure when the system is a t  rest has been removed from the hydrostatic pressure 
p ;  C is a horizontal velocity scale; and o is a non-dimensional time scale. Important 
non-dimensional parameters are the Rossby number 

E = C/f,L 

and the Ekman number E = 2v/ fO H i .  

(v is an eddy viscosity.) 
We also define P-eEect and topography-height parameters by 

p = p*L/fo, ho = h$/Ho. 

It is assumed that E ,  E2, /3 and h ,  are all small compared to unity, as is appropriate for 
large-seale geophysical flow over shallow obstacles. 

To lowest order the interior flow is in geostrophic balance, so 

v = p z ,  u = - p y ,  (2.1) 
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and p(x, y) is a stream function for u(x, y). The control of this flow by small vertical 
motions is described by the quasi-geostrophic vorticity equation 

w&++u.V~+pv = w, 

= +E4CT - EbC- u . Vh, 

where 5 ana I& are the interior and prescribed upper surface vorticities. In  terms of 
p, (2.1) can be written as 

wV2pt + J(p, sV2p + p y  + h) + E*V2p = 8E*CT, 

J(P, 9 )  = Px9y-Pv9x. 

P( - n, Y ,  t )  = P@, Y ,  t ) .  

(2.3) 

where the Jacobian operator J is defined by 

Periodicity of the system requires 

(2.4) 

(2 .5)  

The side walls are streamlines, so boundary conditions are 

P(X, 0,  t )  = 0, P(X, b,  t )  = - Q ( t ) .  

The spatial constant Q can be expressed as 

Q = S b u d y  0 = Ub, (2.6) 

where U is the average velocity in the channel. To O( 1) the channel depth is unity, SO 

Q is also the lowest-order estimate of the net zonal transport in the channel. 
At this stage Q is not determined so an extra constraint is needed to close the prob- 

lem mathematically. By balancing interior and Ekman-layer transports to O( E*) we 
obtain the time-dependent version of the circulation condition used in Davey (1978). 
This is 

f {WUt + E*u - + E h T ) .  dl = 0, (2.7) 

where the integral is taken around any streamline at  time t .  In particular, on the side 
walls y = 0, b (2.7) leads to 

This condition is necessary and sufficient to determine p. 

flow 

(U, = f 1 will be used to investigate eastward and westward flow.) Further, only 
topography that has zero zonal average and vanishes on side walls will be considered. 
We put 

where @ represents zonally averaged shear and q5 corresponds to the remaining 
eddies (waves). The boundary condition (2.5) requires 

For convenience and simplicity we now restrict attention to the uniform surface 

U T  = (ZU,, 0). (2.9) 

P = - Y + @(y, t )  + $&, Y ,  0 ,  (2.10) 

@ = $ = O ,  y = O , b .  (2.11) 
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Taking the zonal average of (2.3) leads to  

271 

w - + E *  @u,+[J($,~V2$+h)] = 0 (2.1 2 a)  
( : t  1 

(a zonal average will be indicated by square brackets). This leaves 

oV2$t + [u] (eV2$ + h), +p$, + E4V2$ + J ( $ ,  eV2$ + h)  - [ J ( $ ,  €V2$ + h)]  = 0. (2.12b) 

With an integration by parts the zonal-average term in (2.12) becomes 

[J ($ ,  SV2$ + h)l = - [$W2$ -t N z u  + $&V2$ + h),l 
a 
aY 

= - - [(b(EV2$ + h)J .  

From the side-wall circulation condition (2.8) we have 

(2.13) 

Integrating ( 2 . 1 2 ~ )  from 0 to y using (2.13) and (2.14) then leads to 

Integrating again across the channel gives 

(2.16) 

The double integral of $V$, vanishes (using (2.11) and periodicity), so the required 
equation for Q is 

w~~ + E*Q = E ~ Q ,  - 2n j - sph&XdY,  

where Qo = Uo b. 

is derived in appendix A. One use is that for a steady state (A 5 )  gives 
A useful alternative form of this equation that relates Q to the total kinetic energy 

b(U0- U )  = 2nU - l J J o ; + $ : + $ ; d x d y .  

The integral is positive or zero, so in equilibrium we have 

0 < u/uo < 1 .  

(2.17) 

(2.18) 

3. The simplest steady quasi-linear theory 
When the topography is flat the steady response to u ~ ,  = (2U0, 0) is simply 

u = (U0, 0). (3.1) 

In general, however, the system is nonlinear and has not been solved exactly. The 
standard technique for obtaining approximate solutions is to consider small perturba- 
tions to (3.1) and linearize the equations. It was found that this method (outlined in 
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appendix B) gives poor results when the p-effect is included, unless the perturbations 
are uninterestingly small. This failure can be remedied by allowing the mean flow to 
adjust to topographic effects. 

For the simplest quasi-linear theory all but the zonal averages of interactions 
between eddies, mean shear and topography are discarded. (This assumption of weak 
nonlinearity will be tested in 5 5 by comparing results with fully nonlinear numerical 
solutions.) Effectively advection of sc+ h by eddies and mean shear is removed and 
(2.12b) reduces to 

The term Uh, represents generation of eddy vorticity by the zonal mean flow over the 
topography. This must be balanced by zonal advection by U ,  meridional advection of 
background vorticity Py, and dissipation. The essential difference between (3.2) and 
linear methods is that U is not prescribed. 

E U V ~ $ , + B $ , + E ~ V ~ # +  Uh, = 0. (3.2) 

The transport equation (2.16) gives for a steady state 

The term on the right will be referred to as the topographic drag. An alternative 
expression is, from (3.2), 

(The mean shear contribution in the exact version (2.17) does not appear in (3.4) due 
to the neglect of eddy-shear interactions in (3.2).)  

With boundary conditions (2.1 l), (3.2) can be solved to find $ in terms of U .  Equa- 
tion (3.3) then becomes an implicit equation for U as a function of the forcing and 
topography. It is apparent that for this theory the mean shear (which can be found 
from (2.15)) does not influence U and $, but serves only to match the side-wall circu- 
lation conditions. 

As an example we consider the topography 

M 

m = l  
h = hoH(y) 2 F,COSWLX, (3.5) 

and in particular choose the meridional profile 

H(y) = sinly (3.6) 

with 1 = nr/b, and integers m, n. The perturbation $ then takes the form 

M 

1 
$ = sin ly 2 A ,  cos mx + B, sin mx. (3.7) 

(Note that [$V2$J = 0 for this simple example.) 
From (3.2) and (3.7) we find 

A ,  = - UhomFmm(~-eUK2)/D,, 

B, = - UhomFm E)K2/D,, 

where D, = EK4+m2(/3-sUK2)2, K2 = m2+12. 

( 3 . 8 ~ )  

(3.8b) 
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FIGURE 2. Contours of the topography with triangular x profile, as approximated 
by truncated Fourier series. 

The transport equation (3.3) gives, with some rearrangement, 

/ U 17 - = 1 - & h ~ - ~ m 2 F ~ K 2  ( E K 4 + m 2 ( , 9 - ~ U K 2 ) 2 ) .  
UO uo 1 

(This is a polynomial in U of degree 2M + 1 .) 
From (2.15) the mean flow can be calculated using (3.8) and (3.9), giving 

(3.9) 

[u] = U,- 2(U,-U)sin21y. (3.10) 

An important feature of (3.9) is that there may be several solutions for any one set 
of external parameters. However there is a unique U, and E ,  corresponding to each 
internal Rossby number sU.  This is apparent from the rearrangement of (3.9) as 

(3.11) 

Similarly there may be multiple solutions for U for any one topography height, but 
there is only one h, > 0 for each U .  

4. Results from the simplest quasi-linear theory 
To illustrate the theory described in the previous section results for a particular 

system will be described. An obstacle is chosen with a triangular x profile of half- 
width x, = 1,  and siny cross-channel dependence. Contours of this topography are 
shown in figure 2. (The first ten terms of the Fourier representation (3.5) were used.) 
The channel width is b = n. 

Streamlines (contours of - Uy + 0 + q5) are given in figure 3, for /3 = 0.2, EJ = 0.02, 
h, = 0-2 and various E .  These show the effect of varying the forcing when dissipation 
is small. For westward flow (figure 3a)  the topographic effect is small and U is little 
changedfrom U,. With eastward forcing of the same magnitude the disturbance is much 
larger and U is almost halved (see figure 3 b ) .  A wave pattern occurs downstream of the 
obstacle, at9 expected for eastward flow on a /3-plane. Note that this wave decays only 
slowly downstream and hence affects the flow pattern upstream of the obstacle. For 
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FIGURE 3. Streamlines for p = 0.2, E& = 0.02, h = 0.2. 

(a )  Uo = -1, E = 0.05, U = -0.97. 

( b )  Uo = 1, E = 0.05, U = 0.58. 

(c) U, = 1, E = 0.014, U = 0.72. 
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FIGURE 4. Equal-interval contours of UIU,  for varying EU and E*, 

with h,, = 0.4. (a )  p = 0, (b)  p = 0.2. 

weaker forcing the wavelength is smaller and the disturbance decays more rapidly, 
as can be seen by comparing figures 3 (b ,  c ) .  

The net zonal flow magnitude UIU, is shown in figure 4 as a function of Ed- and sU)  
calculated using equation (3.11); sU is used rather than s because UIU, is a single- 
valued function of sU,  but may be a multiple-valued function of €. WhenP = 0 there 
is a steady increase in U / U ,  as leUJ or E* increases, and the result is the same for east- 
ward and westward flow (figure 4a) .  By contrast, when @ > 0 (figure 4 b )  the result is 
not symmetric and a series of minima appear for eastward flow (sU > 0) .  For given 
E* these minima occur at sU N ,!I/Iiz, and are most prominent for small Ed-. (They 
broaden and fade with increasing dissipation.) For westward flow there are no minima. 
The behaviour for sU c 0 is like that when p = 0, with U/L& increased a little. The same 
general features are found for different topography heights, but the relative magnitudes 
of the minima depend on the topography shape. (Higher wavenumbers are emphasized 
for narrower obstacles.) 

The behaviour described above is best explained by first considering one topographic 
mode, cos mx sin ly say. The zonal flow U over this topography produces vorticity 
V2q5 of the same pattern, with some phase shift. This pattern is advected downstream 
by U .  I n  addition induced lateral movement causes further vorticity changes via the 
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1-effect, such that the wave propagates a t  a speed -,4/EK2. This Rossby wave 
propagation is equivalent to zonal advection, as can be seen from the identity 

Pv = P 4 x  = - (P/K2) v24z 
for sinusoidal disturbance $. The net effect is that the wave is (advected' a t  a speed 
U, relative to  the topography, with 

E U ~  = EU -/3/K2. (4.1) 

(4.2) 

For this single mode (3.2) gives 

EU,V'#~+ E*V'++ Uh, = 0, 

which expresses the balance of vorticity ' advection ', dissipation and generation. 
When ]EU,I + Et the main balance is between (advection' and generation. The 

eddy stream function 4 is then almost in phase with the topography and the topo- 
graphic drag is correspondingly low, according to  (3.3). As \sUR1 decreases a larger 
perturbation is needed to balance Uh,, and topographic drag increases accordingly. 
(Note that the need for larger V24 is offset somewhat by the decreaeein I U I. The change 
in U also affects UR.) 

With ( E U ~ I  2 E* dissipation becomes important. Then h and 9 become more out 
of phase and U/Uo is further decreased. The minimum occurs when EU --f p / K 2 ,  when 
large eddies and low U are required for a balance of dissipation and generation. In 
this case, when =l= 0, a resonant standing Rossby wave occurs with its amplitude 
limited only by dissipation, according to this theory. 

When several modes are present the situation is changed somewhat because the 
separate responses cannot be superimposed. When /3 + 0 each mode still has a distinct 
minimum, but its magnitude is reduced by the presence of other modes. The several 
minima seen in figure 4 ( b )  are due to the excitation of standing Rossby waves of 
various wavenumbers. When /3 = 0 the minima all occur at the limit E + 0. 

The topographic effect diminishes as I U',l increases. Hence for westward flow U/Uo 
is increased by increasing E and by the /3-effect. For eastward flow disturbances 
decrease when E increases beyond the largest value of /3/K2. 

It is interesting to note that L& changes sign when EU passes a resonance point 
P / K 2 .  For small E4 there is then a rapid phase reversal of q5, so a dramatic change in 
flow pattern can be caused by a small change in EU.  

The system can evidently be very sensitive to the parameter E U .  This internal 
Rossby number (based on the mean flow speed) depends on the effect of topography on 
U ,  via eddy-topography interactions. The quasi-linear theory is an improvement on 
the standard perturbation method because this dependence is included. 

An important feature of the theory is the occurrence of multiple equilibria for 
fixed external parameters. When h, (or E )  is small there is only one solution to (3.9), 
but as h, (or E )  is increased there may be more than one solution for some ranges of 
E (or h,,). This behaviour can be seen in figure 5, which shows the response of U/Uo 
to varying E with /3 > 0. (The topography used is that of figure 2.) The multiple 
solutions appear for eastward flow, and overlap more as h, increases. The minima in 
UIU, occur very close to resonance points P / K 2 ;  the slight discrepancy is caused by 
having several modes in the system. (The curves EU = P / K 2  are given in figure 6 for 
a few wavenumbers.) 
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E uo 
FIGURE 5. UIU,  as a function of &UO, with p = 0.2, E* = 0.02, h,, = 0.2 

(solid curve), h, = 0.4 (dashed ciirve). 

The stability of the solutions was determined by using time-dependent linear ana- 
lysis of small perturbations from equilibrium. It was found that single solutions are 
always stable. When three alternatives occur, however, the high- U andlow- U solutions 
are stable, while the middle branch is unstable. 

These stability properties can be largely explained by a simple argument. First 
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consider the portion of the equilibrium curve where d U / d s  < 0 and sU < p / K 2 .  
(The quantity K 2  corresponds to the dominant wave for that region.) A small increase 
in E will decrease 77,. The topographic drag then increases and U decreases, so the 
system moves towards a new equilibrium point on the same branch. (The decrease in 
U also increases U’ again, thus providing a brake on the change in U.)  Likewise such a 
point is stable for a small decrease in e.  A similar argument can be made for stability 
when dU/ds  > 0 and sU > P / K 2 .  (This category includes a small region near a local 
minimum.) An increase in E will increase U, and in turn increase U ,  again towards 
equilibrium on the same branch. This further increases U,. In this case the increase 
in U is retarded by increased vorticity generation Uh,. ( A jump from a lower to upper 
branch occurs when this mechanism cannot counteract the increase in U.) When 
d U / d s  < 0 and EU > P/K2,  however, a change in E causes a shift in U away from the 
middle branch toward an upper or lower branch. 

Charney & DeVore (1979) and Hart (1979) have investigated multiple equilibria 
in similar situations. They also found that the central of three branches was unstable. 
Charney & DeVore, using single-mode topography and a severely truncated nonlinear 
model, found that the lower branch in their case could be unstable to higher-mode 
disturbances. Hart has considered finite-amplitude perturbations, and a discussion of 
limit cycles is included in his paper. 

Another stability property is worth mentioning. If eU is fixed (and E is allowed to 
vary) then this quasi-linear theory becomes linear and all equilibrium solutions are 
stable. A time-dependent system can thus converge to an ‘unstable’ steady state 
with this constraint. 

For multiple solutions with low U we find eU NN p / K 2 ,  so there is a balance of dis- 
sipation and generation as discussed earlier. (Such a solution, with large eddies and 
weak mean flow, is called a blocked system.) The alternative with larger U has 
eU > P / K 2  and there is a balance of advection and generation. Examples of blocked 
and unblocked flow patterns can be seen in figures 9 and 14. Note how one mode 
dominates these solutions, and is out of phase and in phase with the topography for the 
blocked and unblocked systems respectively. 

The above discussion has concentrated on multiple equilibria with the p-effect. The 
simplest quasilinear theory also predicts multiple equilibria when = 0. Calculations 
for this case were made using the simpler topography h = h,cosxsin y. Equation 
(3.9) then reduces to the cubic 

c2( U / U , ) 3  - s2( U/tio)2 + ( E  + +hi) U / U o  - E = 0, (4.3) 
and reasonably simple conditions for multiplicity can be found. For example, a 
sufficient (but not necessary) condition for multiple equilibria is 

4(E+$h,2) < 6‘ < $(&hi- &E),  

3(E + &hi) < s2 < ( E  + ;Bh:) (19E + &hE)/4E. 

(4.4) 

(4.5) 
Graphs of U/Uo as a function of s(Jo are given in figure 7. It is evident that very low 
U/U0 is required for multiple solutions. (This is needed to get the alternative dissi- 
pation-generation and advection-generation balances.) It will be seen later that the 
theory is not valid for such large flow changes, and that more accurate calculations 
show no such multiplicity. 

whereas a necessary but not sufficient condition is 
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FIGURE 7. UIU,  as a function of cUo, with p = 0,  E )  = 0.01, using 
cos z sin y topography with h, as indicated. 

The simple quasi-linear theory predicts some interesting phenomena. In the next 
section these results are tested by comparison with those from a fully nonlinear 
numerical model. 

5. Comparison with a fully nonlinear model 
A spectrally truncated time-dependent numerical model was developed in con- 

junction with the quasi-linear theory. All nonlinear terms were retained, and equations 
for the spectral coefficients found from the vorticity and transport equations. (Details 
are given in appendix C.) Steady solutions were obtained by time-stepping from some 
initial conditions. The topography of figure 2 was again used, with ,~3 = 0.2, E* = 0.01, 
h, = 0.075. (These values are not intended to simulate any actual situation, but rather 
chosen to show contrasting results.) 

The dependence of U on E for the numerical and simple quasi-linear models is shown 
in figure 8. For relatively small values of e (less than about 0.1 for this example) the 
positions of minima agree well, with the quasi-linear theory somewhat overestimating 
the topographic drag. In  both cases multiple solutions are found near the m = 2 
resonance point, though the region of overlapping branches is smaller than predicted. 

Upper branch steady states were found using the initial flow u = (1 ,  0), whereas 
the lower branch was obtained with u = (0, 0) initially. To define further the multiple 
solution regime a steady state on one branch was reached, then E was gradually 
changed. (It was thought that this would increase the chance of finding multiple 
solutions by closely following the alternative branches. I n  practice, however, no 
extra states were found that could not be reached from the uniform initial conditions.) 
The upper and lower branches overlapped for 0.057 < E < 0.060. A change in e of 
0.0005 was sufficient to trigger a slow drift from one branch to  the other. (Near reso- 
nance points long times were needed to reach a steady state, typically about ten spin- 
up times O(wE-*). This sluggish behaviour is due to the slow group velocity of the 
dominant Rossby wave, as discussed by McIntyre (1968).) 

Another method used to obtain steady solutions was to fix EU and to allow e to 
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FIGURE 8. U / U ,  as afunction of eUO with /3 = 0.2, Et  = 0.01, h, = 0.075, for the simplest quasi- 
linear (solid line) and fully nonlinear (open circles) models. The solid circles indicate unstable 
fully nonlinear results. 
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FIGURE 9. Alternative flow patterns from the fully nonlinear model with B = 0.2, E* = 0.01, 
h,o = 0.0’75, E = 0.06. (a) U = 0.71, (a) U = 0.92. 
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vary. (The mean flow U evolved according to  the transport equation (2.16), and at  
each time-step E was adjusted to keep EU constant.) In  this way different branches 
could be reached from the same initial state u = (1, 0) by choosing different EU.  The 
points shown as solid circles in figure 8 are unstable states found by this method. 
(When the constraint of constant eU was removed and e fixed these solutions drifted 
very slowly towards one of the stable alternatives.) These points agree with the un- 
stable branch predicted by the quasi-linear theory. 

Figure 9 shows streamlines for the two stable numerical solutions found a t  E = 0.06. 
The (m, n)  = (2, 1) wave is clearly dominant, as expected. The blocked mode 
(figure 9a) has U = 0-71, whereas the other has U = 0-92. The quasi-linear theory 
gives multiple solutions for the same parameters that are very similar to the 
numerical results. 

For larger e the numerical and simple quasi-linear results do not agree near the 
m = 1 resonance point. The difference is not obvious in the flow patterns, which are 
dominated by the (m, n)  = (1 ,  1) wave in each case, but is clearly seen in the variation 
of U with e.  In  particular no multiple solutions were found in this region using the 
fully nonlinear model, in contrast to the quasi-linear prediction. (The system is still 
very sensitive to e near the predicted resonance point, however.) 

The discrepancy is mainly due to the omission of the zonally averaged shear. A 
modified theory that takes this into account is given in the next section. 

6. An improved quasi-linear theory 

omitted, the steady eddy-vorticity equation is 
When the zonally averaged shear is retained, but eddy-eddy interactions are still 

E [ U ]  V2#, + (B - E[u],,) 4, + EiV24 + [u] h, = 0. (6.1) 

In general we can use 
# = C a,(y) cos mx + b,(y) sin mx. 

m 

Then with topography given by (3.5) the ordinary differential equations for the co- 
efficients are 

e[u]  m(a,,-m2a) + m ( ~ - ~ [ ~ ] , ~ ) a - B * ( b , , - m ~ b )  = - [ ~ ] m F , h ~ H ( y ) ,  ( 6 . 3 ~ )  

.[a] m(b,, - m2b) + m(P- e[uJ,,) b + Et(a,, - m2a) = 0. (6.3b) 

From (2.15) we have 

This can be arranged using (6.1) to obtain 

[u] = uo - [+(EV'# + h),]/Ei. 

LUI2 = [UI v, + [#V241. 
In  terms of a, and b,, 

The system described by (6.3) and (6.6) is closed and could be solved numerically 
with the side-wall conditions a, = b, = 0. The effect of including the zonal shear can 
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be found more easily however. When H ( y )  = sin ly the results of fi 3 suggest para- 
metrizing [u] in terms of U by 

(6.7) [u] = u + ( u, - U )  cos 21y. 

Analytic results can be obtained when the eddy structure is approximated by 

urn = A ,  sin ly, b, = B, sin ly. (6.8) 

(The system using (6.7) and (6.8) will be referred to as theimproved quasi-lineartheory.) 
Collecting coefficients of sin ly in (6.3) then gives 

A ,  = - mF,t?m(/?- e6!K2)/Bm, (6.9a) 

B, = -mFm8EiK2/Bm) (6.9b) 

where 

and 

Bm = EK4 + m2(/?- E ~ ! K ~ ) ~ ,  

o= U-4(U0- U ) ,  

/3= p-2s12(uO- U ) .  

Comparing (6.9) with (3.8) shows that U has been replaced by the smaller value 0. 
This reflects the dcreased advection and topographic generation of eddy vorticity due 
to the decrease of [u] in mid-channel. Similarly p has been replaced by the approximate 
potential vorticity gradient /?. (Note that the latter modification becomes more im- 
portant as e increases.) 

As in $3 an implicit equation for U can be obtained. We find 

U hi 8 U,  = 1 - - - zrn2Fk K2/Bm. uQ 
(6.10) 

The same general features of resonance and multiplicity are found as in equation 
(3.9), but modified as explained below. Further, this result restricts U more closely, to 

'& < u/uQ < 1 .  (6.11) 

Solutions to (6.10) can be easily obtained by prescribing everything but h,, then 
solving for h,. 

Contours of h, for varying e and U ,  as shown in figure 10, represent graphs of U as a 
function of e. The topography of figure 2 was used, with p = 0.2. When Ei = 0.02 
(figure 10a) the usual minima appear but nomultiplesolutionsoccur.AsE4isdecreased 
multiple solutions do appear, but in contrast to the simpler theory they fade out as e 
increases or U decreases (see figure l o b  with E4 = 0.01). With E )  lowered further to 
0-005 (figure 1Oc) the multiplicity becomes more pronounced but the multiple solution 
regime is little changed. 

It is interesting to find a closed loop in figure 1O(c). This loop cannot be reached 
simply by varying e slowly as in other multiple branch cases. Presumably some internal 
fluctuation of a quasi-stationary system is needed to reach such a loop. 

The dynamics can still be regarded as a balance of relative advection, dissipation 
and generation as described in $4)  with U and p modified as above. The condition for 
resonance (no relative advection) is altered to 

el?= /?/K2. (6.12) 
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FIGURE 10. UIU,  as a function of EU, for the improved quasi-linear model with /3 = 0.2 and 
topography height as indicated. (a)  Ea = 0.02, ( b )  E& = 0.01, ( c )  Ea = 0.005. The dashed loop is 
for h, = 0.175. (The other portion of the 0.175 contour is close to the 0.2 contour.) 
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0.05 0.15 0.20 

6 UO 
FIGURE 11. Lines of resonmce €6 = p/ (ma + 1). 

Graphs of (6.12) are given in figure 11 for /3 = 0.2. For westward flow there is no 
resonance. For eastward flow the resonance curves in ( E ,  U )  space begin at (/3/K2, 1).  
Then U decreases as E increases, and for all K2 the curves meet a t  E = 3/3/412 when 
U = 4 (the theoretical minimum). This behaviour explains the new bounds on the 
multiple solution regimes, which rely on the blocked modes that occur near such curves. 
Approximate boundaries are E < 3/3/4Z2 and, from (6.12), 

/ 3 + ~ ( K ~ / 2 - 2 1 ~ )  
’ ~ ( 3 K 2 / 2  - 212) ’ 

where K2 corresponds to the dominant mode in the topography slope spectrum. (The 
response is determined by topography slope rather than height when there is a balance 
of dissipation and generation in a resonant system.) 

The improvement gained by the modified theory can be seen in figure 12, where 
the results are compared with the fully nonlinear numerical model. Very good agree- 
ment is found, so the deficits of the simplest theory for relatively large E are due to the 
neglect of mean shear in the dynamics. 

The multiple solutions predicted for B = 0 by the simplest quasi-linear theory are 
not found in the improved version. Figure 13 shows the dependence of U/U, on EU, 
according to (6.10) with /3 = 0, and can be contrasted with figure 7. Multiplicity is 
inhibited by the lower bound on UIU,. 

As an example of the flow patterns predicted by the improved theory, the solutions 
when h,, = 0.1, E i  = 0.005, /3 = 0.2 and E = 0.14 are shown in figure 14. The unblocked 
pattern (figure 14b) has U = 0.92 and is in phase with the topography. The blocked 
alternative, with U = 0.42, looks very different with an omega-shaped pattern. (The 
closed streamline region that appears is not possible in a steady fully nonlinear solution 
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FIUURE 12. U / U ,  aa a function of E U ~ ,  with p = 0.2, E i  = 0.01, h = 0.075, for the improved 

quasi-linear (solid line) and fully nonlinear (circles) models. 
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FIGURE 13. U / U ,  as a function of EU,, for the improved quasi-linear model 
EUO 

with parameters aa in figure 7. 

because i t  violates the circulation condition. However such regions do appear, and 
persist, in time-dependent systems.) 

As well as affecting U and multiplicity, inclusion of mean shear can allow tilting 
of waves in the flow pattern. Variation of [u] across the channel allows different 
balances of terms a t  different latitudes, leading to latitudinal phase changes. This 
behaviour is evident in figure 16 (a) ,  which shows streamlines from the fully nonlinear 
model with p = 0.2, E+ = 0.01, E = 0.03 and h, = 0.2. The improved quasi-linear 
theory fixes the eddy structure, however, and allows no wave tilts (see figure 15b).  
(The net mean flow is almost the same though: U = 0.60 aa against U = 0.56 for the 
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FIGURE 14. Alternative streamlines from the improved quasi-linear model with 
p = 0.2, E& = 0.005, h = 0.1, E = 0.14. (a )  U = 0.42, ( b )  U = 0.92. 

fully nonlinear model.) If the constraint (6.8) is Iemoved and (6.3) solved numerically, 
with [u] still parametrized as in (6.7), the required wave tilts are obtained (see 
figure 15c). 

7. Conclusions 
A quasi-linear theory for steady flow over topography in a periodic channel has been 

developed. The main feature is that feedback between the zonally averaged flow [u] 
and eddy-topography interactions is allowed. This is an improvement on standard 
perturbation methods, particularly when Rossby waves are present. 

For the simplest model [u] is approximated by a uniform mean flow of unprescribed 
magnitude. The dynamics can be treated as a balance of eddy-vorticity generation, 
dissipation and relative advection. It is found that the p-effect reduces the influence 
of topography for westward flow, and increases it for eastward flow. If dissipation is 
small Rossby waves can be generated in eastward flow and associated resonance 
effects appear. Near resonance the flow is very sensitive to the strength of the forcing: 
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FIGURE 15. Streamlines for ,8 = 0.2, E* = 0.01, h, = 0.2, E = 0.03. 

(a )  Fully nonlinear model, U = 0.56. 
( b )  Improved quasi-linear model, U = 0.60. 
(c) Improved model solved numerically, U = 0.56. 
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small external changes can cause large changes in the course and magnitude of 
currents. 

Multiple solutions are predicted. Equilibrium curves of U ,  with varying E ,  show 
stable upper and lower branches and an unstable middle branch. As described by 
Hart (1  979) this allows a hysteresis effect as the external forcing varies, The system can 
switch to a new branch in response to a change in E ,  then remain on that branch even 
after E returns to  its former value. This has been advanced as a possible explanation 
for the persistence of blocking patterns in the atmosphere. 

A comparison of simplest quasi-linear results with a fully nonlinear numerical model 
shows good agreement a t  low 6, with predicted multiple solutions confirmed. A t  larger 
E however some discrepancies are found. These can be overcome by including mean 
shear effects. The improved quasi-linear theory, which uses a simple parametrization 
of [u] in terms of U ,  gives good analytic results for relatively large as well as low E .  It 
also shows that multiple equilibria are inhibited when mean shear is included. 

Results from the analytic and numerical models indicate that the quasi-linear 
approximation starts to break down when U/Uo is less than about 0.5. One limiting 
factor for the steady theory may be barotropic instability. The flow may be unstable 
if / ~ - E [ U ] ~ ~  reverses sign. For the [u] profile (6.7) this occurs when 

.(U0- U )  > /3/412. (7.1) 

This may also be an explanation for oscillations that have been found in some time- 
dependent fully nonlinear results, and are currently being investigated. (Such be- 
haviour occurs at  Iow E )  and may represent a transition regime between steady flow 
and turbulence.) 

Another limiting factor is the increasing importance of nonlinear eddy interactions 
as E increases or E* decreases. One way this affects the basic dynamics is as follows. 
From the exact transport equation (3.3) it  can be seen that a low U solution requires a 
large-amplitude wave of appropriate phase interacting with the topography. Non- 
linear effects will tend to  transfer energy away from a dominant mode, thus changing 
U and consequently altering the vorticity balance. 

There are several possible extensions of the basic theory. The effects of more general 
forcing and topography can be added. Time dependence can be included to find the 
response to  fluctuating forcing or background noise, and may be useful for developing 
a theory for statistically steady systems. 

For more specific atmospheric applications on planetary scales spherical geometry 
should be used, and temperature gradient effects included. Diabatic heating could be 
added, to study the effect of varying land-sea contrasts for example. 

The theory can also be used as a basic model of the Antartic Circumpolar Current 
(a large ocean current which flows eastward around Antartica and is strongly influ- 
enced by topography). On very large scales (0( 10 000 km)) advection effects are usually 
discarded (Smith & Fandry 1978 apply such a theory using two layers and O(1) 
topography height). Preliminary quasi-linear calculations with stratification suggest 
that multiple equilibria can occur on such scales. The circumpolar transport may also 
be influenced by interactions on smaller scales. From an analysis of hydrographic data 
Gordon & Bye (1972) deduced that stationary Rossby waves with wavelength 
O( 1000 km) may occur east of the Campbell Plateau (a large submarine ridge south 
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of New Zealand). The evidence is inconclusive due to the scarcity of data, but it does 
suggest that the feedback mechanisms of the quasi-linear theory are important. 

Application is not limited to circumpolar geometry. For example, the concept of an 
implicit basic flow could be used in an idealized model of the North Atlantic circula- 
tion to investigate the relation between large gyres and Gulf Stream meanders. 
Further, Rossby waves with wavelengths up to 200 km have been found on conti- 
nental rises (see Thompson & Luyten 1976, for example). Interactions of such waves 
with obstacles (such as canyons) may cause local blocking events, and it is thought that 
the periodic quasi-linear theory can be modified to study such phenomena. 

Most of the work described in this paper was done while a t  the National Center for 
for Atmospheric Research, and the support of a post-doctoral fellowship there is 
gratefully acknowledged. The National Center for Atmospheric Research is sponsored 
by the National Science Foundation. 

Appendix A. An alternative transport equation 

obtain 
The vorticity equation (2.3) is multiplied by p and integrated over the channel to 

~~p{ov~p~+E~V~p-~~b(u,,lr,,)}dxdy = 0. (A 1)  

(The integral of the Jacobian and p terms vanishes.) Integrating by parts and using 
periodicity and boundary conditions (2.5) leads to 

The circulation condition (2.8) cancels the side-wall integrals. This leaves the energy 
equation 

( U U ~  + V U ~ )  dx dy, (A 3) 

where the total kinetic energy of the quasi-geostrophic flow is 

For the special case uT = (2Uo, 0) the right-hand side of (A 3) becomes 

+E&UosJudydx  = EbrUo&. 

Thus we have an equation relating Q and E,: 

I 0  
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Appendix B. The standard perturbation method 
For perturbations about the basic flow u = (Uo, 0) we put 

p = -  uoy + 6p1 + 62112 + . . ., (B 1 )  

where 6 is some expansion parameter. (The choice 6 = ho/(E + s2)* as in Davey (1978) 
gives results valid for the two limits E -+ 0 and E* -+ 0, and the range between.) To 
O(6) the vorticity equation gives 

€Uo6V2pl,+6(Bp,,+6EtV2~, = - Uoh,. 

The steady version of the transport equation (A 5) can be used 

/ /@2+ w2)dxdy. (B 3) 
1 

Q =- 
2nU0 

This gives to O(S2) 

where 

It follows that 
Qi = 0, 

Q z  = -&/I (u? + w;) ax dy. 

There is no change in Q to O(S),  so (B 2 )  can be solved withp, = 0 on y = 0, b. Knowing 
p ,  the transport change Q2 can be found. The next term p2 (which includes a mean 
shear) can then be calculated, and used to find Q3 etc. 

When a Fourier series expansion is used as in 5 3 we find 

(Note that the transport change is independent of the choice for 6.) There are two 
main defects. The transport change is proportional to hi, which is too strong a depend- 
ence for changes larger than about 10 yo. Second, the response to Rossby-wave reso- 
nances is too large and is misplaced. 

Appendix C. Spectral equations for the numerical model 

2n. and width n are denoted 
Some notation must first be defined. The orthogonal modes for a channel of length 

ck = sinny 

c k  = cosmx sin ny 

S, = sin mx sin ny 

for 

for n = 1 ,... N ,  m = 1 ,... M ,  k = ( m + l ) N + n .  

n = k = 1, ... 2N;  
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Summations to  be used are 
2N 2 N + M N  

1 2 N + 1  
Z = C ,  C ’ =  2 . 

The stream function is written as the truncated series 

p = - U y + @ + $ ,  

where @ = Cak(t)Ck, 

$ = C’Ak(t)  ck + Bk(t)Sk.  

We use topography 

and prescribed upper-surface stream function 

h = h,~fkCk+h,C’E“,Ck+GkSk, 

291 

p~ = -&y+ CaTkck+C’ATkCk+BTkSk. (C 3) 

Equations for the spectral coefficients are obtained from the vorticity equation. For 
the mean shear we find 

2 K i  Wakt = 2E*Ki(&ZTk - a k )  - &’C’K;(AiBj - AjBi) aijk 

+h,C’C’(A,Gj-B,~.).)ijk ( K i  = m2+n2). (C 4) 

The eddylmean-shear interaction coefficient is 

The eddy-eddy interaction coefficients are 

10-2 
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(There are several symmetries and inter-relations for these coefficients.) The transport 
equation (2.15) gives 

O q  = E#(*U.- U)+ah,~'m(BkFk-AkCT'k). (C 6) 

In  the absence of dissipation it can be shown that the total kinetic energy 

K.E. = -//(u2+v2)dxdy, 1 

x = s s (4+h+pY)2d& 

2 
and the total enstrophy 

are conserved. (It was found that 2N mean-shear modes are required to conserve x 
when p =+ 0.) 

Time-stepping from some initial conditions was done using an iterated predictor- 
corrector scheme. For the results presented in $ 5 ,  M = 8, N = 4 was used. (Addition 
of extra modes produced insignificant changes in results.) 
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